7,459 research outputs found

    A comparison of two astronomical tuning approaches for the Oligocene-Miocene Transition from Pacific Ocean Site U1334 and implications for the carbon cycle

    Get PDF
    Astronomical tuning of sediment sequences requires both unambiguous cycle-pattern recognition in climate proxy records and astronomical solutions, and independent information about the phase relationship between these two. Here we present two astronomically tuned age models for the Oligocene-Miocene Transition (OMT) from Integrated Ocean Drilling Program Site U1334 (equatorial Pacific Ocean) to assess the effect tuning approaches have on astronomically calibrated ages and the geologic time scale. These age models are based on different phase-assumptions between climate proxy records and eccentricity: the first age model is based on an inverse and in-phase assumption of CaCO3 weight (wt %) to Earth's orbital eccentricity, the second age model is based on an inverse and in-phase assumption of benthic foraminifer stable carbon isotope ratios (δ13C) to eccentricity. The phase-assumptions that underpin these age models represent two end-members on the range of possible tuning options. To independently test which tuned age model and tuning assumptions are correct, we assign their ages to magnetostratigraphic reversals identified in anomaly profiles. Subsequently we compute tectonic plate-pair spreading rates based on the tuned ages. These alternative spreading rate histories indicate that the CaCO3 tuned age model is most consistent with a conservative assumption of constant spreading rates. The CaCO3 tuned age model thus provides robust ages and durations for polarity chrons C6Bn.1n–C6Cn.1r, which are not based on astronomical tuning in the latest iteration of the Geologic Time Scale. Furthermore, it provides independent evidence that the relatively large (several 10,000 years) time lags documented in the benthic foraminiferal isotope records relative to orbital eccentricity, constitute a real feature of the Oligocene-Miocene climate system and carbon cycle. The age constraints from Site U1334 thus provide independent evidence that the delayed responses of the Oligocene-Miocene climate-cryosphere system and carbon cycle resulted from increased nonlinear feedbacks to astronomical forcing

    KAJI EKSPERIMENTAL PEMANTAUAN TEMPERATUR DAN PH PADA KOMPOSTER SKALA RUMAH TANGGA

    Get PDF
    Proses pengomposan secara alami membutuhkan waktu yang lama untuk membuat kompos dari bahan organik. Sehingga kurang efektif dalam mengatasi penumpukan sampah organik. Salah satu upaya untuk mempercepat pengomposan adalah dengan melakukan pengendalian suhu. Pengendalian suhu pada proses pengomposan dilakukan dengan metode Continuous Thermophilic Composting (CTC). CTC merupakan metode pengomposan dengan memperpendek siklus pengomposan dan meningkatkan stabilitas kompos. Suhu kompos akan meningkat dengan cepat dan diikuti dengan peningkatan pH, yang menunjukkan adanya aktivitas mikroorganisme dalam mendegradasi bahan organik. Pengukuran pH kompos dilakukan untuk mengetahui aktivitas mikroorganisme yang terjadi dalam proses pengomposan. Saat ini pengukuran pH kompos masih dilakukan secara manual menggunakan pH meter. Eksperimen kali ini bertujuan untuk merancang alat pengukur pH kompos berbasis mikrokontroler arduino sehingga hasil dapat dipantau secara real time. Alat yang digunakan adalah Sensor pH tanah dan arduino uno. Kedua alat ini dirancang sehingga dapat memantau pH pada proses pengomposan. Hasil pengukuran temperatur pada eksperimen I menunjukan suhu yang dicapai masih dalam rentang mesofilik (24-45)0C sedangkan untuk pengukuran pH menunjukan nilai maksimum 8,5 dan nilai minimum 5,1. Hasil pengukuran pada eksperimen II menunjukan suhu yang dicapai masih dalam rentang mesofilik, sedangkan untuk pengukuran pH menujukan nilai maksimum 8,2 dan nilai minimum 6,4. Hasil pengukuran pada eksperimen III suhu yang dicapai masuk dalam fase termofilik (50-65)0C, sedangkan untuk pengukuran pH menunjukan nilai maksimum 7,5 dan minimum 6,0. Berdasarkan hasil pengukuran tersebut maka yang memenuhi syarat sesuai dengan SNI 19-7030-2004 adalah eksperimen III. Kata Kunci : Arduino Uno, Continuous Thermophilic Composting, Sensor pH tanah, Kompo

    Reflections and Experiences of a Co-Researcher involved in a Renal Research Study

    Get PDF
    Background Patient and Public Involvement (PPI) is seen as a prerequisite for health research. However, current Patient and public involvement literature has noted a paucity of recording of patient and public involvement within research studies. There have been calls for more recordings and reflections, specifically on impact. Renal medicine has also had similar criticisms and any reflections on patient and public involvement has usually been from the viewpoint of the researcher. Roles of patient and public involvement can vary greatly from sitting on an Advisory Group to analysing data. Different PPI roles have been described within studies; one being a co-researcher. However, the role of the co-researcher is largely undefined and appears to vary from study to study. Methods The aims of this paper are to share one first time co-researcher's reflections on the impact of PPI within a mixed methods (non-clinical trial) renal research study. A retrospective, reflective approach was taken using data available to the co-researcher as part of the day-to-day research activity. Electronic correspondence and documents such as meeting notes, minutes, interview thematic analysis and comments on documents were re-examined. The co-researcher led on writing this paper. Results This paper offers a broad definition of the role of the co-researcher. The co-researcher reflects on undertaking and leading on the thematic analysis of interview transcripts, something she had not previously done before. The co-researcher identified a number of key themes; the differences in time and responsibility between being a coresearcher and an Advisory Group member; how the role evolved and involvement activities could match the co-researchers strengths (and the need for flexibility); the need for training and support and lastly, the time commitment. It was also noted that it is preferable that a co-researcher needs to be involved from the very beginning of the grant application. Conclusions The reflections, voices and views of those undertaking PPI has been largely underrepresented in the literature. The role of co-researcher was seen to be rewarding but demanding, requiring a large time commitment. It is hoped that the learning from sharing this experience will encourage others to undertake this role, and encourage researchers to reflect on the needs of those involved.Peer reviewedFinal Published versio

    Shotgun proteomics as a powerful tool for the study of the proteomes of plants, their pathogens, and plant-pathogen interactions

    Get PDF
    The interaction between plants and pathogenic microorganisms is a multifaceted process mediated by both plant- and pathogen-derived molecules, including proteins, metabolites, and lipids. Large-scale proteome analysis can quantify the dynamics of proteins, biological pathways, and posttranslational modifications (PTMs) involved in the plant–pathogen interaction. Mass spectrometry (MS)-based proteomics has become the preferred method for characterizing proteins at the proteome and sub-proteome (e.g., the phosphoproteome) levels. MS-based proteomics can reveal changes in the quantitative state of a proteome and provide a foundation for understanding the mechanisms involved in plant–pathogen interactions. This review is intended as a primer for biologists that may be unfamiliar with the diverse range of methodology for MS-based shotgun proteomics, with a focus on techniques that have been used to investigate plant–pathogen interactions. We provide a summary of the essential steps required for shotgun proteomic studies of plants, pathogens and plant–pathogen interactions, including methods for protein digestion, identification, separation, and quantification. Finally, we discuss how protein PTMs may directly participate in the interaction between a pathogen and its host plant

    Large-scale protein and phosphoprotein profiling to explore potato resistance mechanisms to Spongospora subterranea infection

    Get PDF
    Potato is one of the most important food crops for human consumption. The soilborne pathogen Spongospora subterranea infects potato roots and tubers, resulting in considerable economic losses from diminished tuber yields and quality. A comprehensive understanding of how potato plants respond to S. subterranea infection is essential for the development of pathogen-resistant crops. Here, we employed label-free proteomics and phosphoproteomics to quantify systemically expressed protein-level responses to S. subterranea root infection in potato foliage of the susceptible and resistant potato cultivars. A total of 2,669 proteins and 1,498 phosphoproteins were quantified in the leaf samples of the different treatment groups. Following statistical analysis of the proteomic data, we identified oxidoreductase activity, electron transfer, and photosynthesis as significant processes that differentially changed upon root infection specifically in the resistant cultivar and not in the susceptible cultivar. The phosphoproteomics results indicated increased activity of signal transduction and defense response functions in the resistant cultivar. In contrast, the majority of increased phosphoproteins in the susceptible cultivar were related to transporter activity and sub-cellular localization. This study provides new insight into the molecular mechanisms and systemic signals involved in potato resistance to S. subterranea infection and has identified new roles for protein phosphorylation in the regulation of potato immune response

    Young children's cognitive achievement: home learning environment, language and ethnic background

    Get PDF
    For decades, research has shown differences in cognitive assessment scores between White and minority ethnic group(s) learners as well as differences across different minority ethnic groups. More recent data have indicated that the home learning environment and languages spoken can impact cognitive assessment and other corollary outcomes. This study uses the Millennium Cohort Study to jointly assess how minority ethnic group, home learning environment and home languages predict child cognitive assessment scores. Regression analyses were conducted using two assessment measures. The following is hypothesised: (1) cognitive achievement scores vary by minority ethnic group, (2) more home learning environment in early childhood leads to higher cognitive development scores and (3) English only in the home yields the highest cognitive scores while no English in the home yields the lowest. Findings reveal that there are differences in cognitive scores along ethnic group categories although there are also some unexpected findings. Home learning environment does not play as large a role as was predicted in raising the assessment scores overall for learners while speaking English in the home does, irrespective of ethnic background

    Growth dynamics and the evolution of cooperation in microbial populations

    Get PDF
    Microbes providing public goods are widespread in nature despite running the risk of being exploited by free-riders. However, the precise ecological factors supporting cooperation are still puzzling. Following recent experiments, we consider the role of population growth and the repetitive fragmentation of populations into new colonies mimicking simple microbial life-cycles. Individual-based modeling reveals that demographic fluctuations, which lead to a large variance in the composition of colonies, promote cooperation. Biased by population dynamics these fluctuations result in two qualitatively distinct regimes of robust cooperation under repetitive fragmentation into groups. First, if the level of cooperation exceeds a threshold, cooperators will take over the whole population. Second, cooperators can also emerge from a single mutant leading to a robust coexistence between cooperators and free-riders. We find frequency and size of population bottlenecks, and growth dynamics to be the major ecological factors determining the regimes and thereby the evolutionary pathway towards cooperation.Comment: 26 pages, 6 figure

    Behavioural syndrome in a solitary predator is independent of body size and growth rate.

    Get PDF
    Models explaining behavioural syndromes often focus on state-dependency, linking behavioural variation to individual differences in other phenotypic features. Empirical studies are, however, rare. Here, we tested for a size and growth-dependent stable behavioural syndrome in the juvenile-stages of a solitary apex predator (pike, Esox lucius), shown as repeatable foraging behaviour across risk. Pike swimming activity, latency to prey attack, number of successful and unsuccessful prey attacks was measured during the presence/absence of visual contact with a competitor or predator. Foraging behaviour across risks was considered an appropriate indicator of boldness in this solitary predator where a trade-off between foraging behaviour and threat avoidance has been reported. Support was found for a behavioural syndrome, where the rank order differences in the foraging behaviour between individuals were maintained across time and risk situation. However, individual behaviour was independent of body size and growth in conditions of high food availability, showing no evidence to support the state-dependent personality hypothesis. The importance of a combination of spatial and temporal environmental variation for generating growth differences is highlighted
    • …
    corecore